2,804 research outputs found

    Viscoelastic Properties of Foam Under Hydrostatic Pressure and Uniaxial Compression

    Get PDF
    AbstractFoam is a lightweight material suitable for aerospace applications for load bearing structures or noise reduction media. The microstructure of the foam, which is constructed with cell ribs, allows its unique mechanical properties. In this work, commercial polyurethane foams with a pore size on the order of a few hundred microns were subjected to quasi-static hydrostatic and uniaxial compression at low strain rates, as well as dynamic sinusoidal loading for studying their loss tangent and storage modulus. The identified incremental negative modulus depends on deformation modes, and it is been shown hydrostatic compression may trigger the negative bulk modulus mode, while uniaxial compression may not. The use of negative modulus in composite materials may lead to extreme high damping and high stiffness materials. Furthermore, by finite element calculations on a dodecahedral unit cell with different elastic constant, it is found that high elastic constant of the cell ribs may give rise to larger negative stiffness effects, when the cell in under hydrostatic compression

    Directional motion of Gallium-based liquid metal induced by asymmetric chemical surrounding

    Get PDF
    Interfacial, or surface tension, is a significant topic in chemical education. This paper describes the directional motion of gallium-based liquid metal drops, resulting from a difference of interfacial tension across the drop. This demonstration can engage students in discovering the underlying chemical principles. A mechanism for the drop’s directional motion is proposed to provide insight into this intriguing phenomenon. It appears that unbalanced chemical environments cause different physical or chemical processes to occur on each hemisphere of the drop, such as a pH difference, redox reactions, galvanic replacement, or adsorption. As a result, a difference in the interfacial tension across the drop is generated, providing the driving force that acts on the drop. This demonstration can be used to introduce the fundamental principles in chemical reactions, such as redox activity, electrical double-layer formation, and interfacial tension

    Process intensification of BaSO4 nanoparticle preparation with agitation of microbubbles

    Get PDF
    AbstractThis study presents a novel technique for the controllable preparation of BaSO4 nanoparticles via the introduction of microbubbles into the reaction system. A high-concentration system based on barite industry was used, with saturated aqueous Na2SO4 and BaS solutions as the reactants. Microbubbles were generated by a membrane dispersion microreactor. The mixing performance was characterized using parallel competing reactions. The effects of various operation parameters on the nanoparticles were determined, and the reaction conditions were optimized. The results showed that the mixing performance could be improved by introducing microbubbles. The BaSO4 nanoparticles were controllably prepared, with a relatively narrow size distribution. The average particle size could likewise be reduced to approximately 40nm. A dimensionless micromixing scale of the microbubble flow was defined, and a model for predicting the BaSO4 particle size was proposed. The calculated results were consistent with the experimental data

    DURABILITY OF RUNNING SHOES WITH EVA AND PU MIDSOLE

    Get PDF
    Running shoes may play an important role in preventing injuries by absorbing external shock due to ground impact (Cook et al., 1990; Verdejo and Mills, 2004). Shoe age maybe an important factor in running injuries. One prospective study showed that running injury was associated with shoe age (Taunton et al., 2003). In recent years, different types of foam materials have been developed for running shoe midsoles. Two common types of foam materials, Ethylene Vinyl Acetate (EVA) and Polyurethane (PU), are now widely used in running shoe midsoles. The purpose of the present study was to examine the durability of running shoes with common types of EVA and PU midsole materials

    Automatic Segmentation Measuring Function for Cardiac MR-Left Ventricle (LV) Images

    Get PDF
    Automatic segmentation approaches are a desirable solution for Endocardium (inner) and Epicardium (outer) contours delineation using cardiac magnetic resonance left ventricle (CMR-LV) short axis images. The Level Set Model (LSM) and Variational LSM (VLSM) is the state-of-the-art in detecting the inner and outer contour for medical images. However, in CMR-LV images segmentation the LSM and VLSM are facing with the issue of re-initialisation because of irregular circle shape. In this paper, we developed an automatic segmentation measuring function based on statistical formulation to solve the re-initialisation issues in huge set of data images. The sign Euclidean distance function successfully classified the negative (inner contour) and positive (outer contour) features. The Fuzzy C mean interaction operator intersects the high membership degree that initialises the centre point. The experiments were conducted using the Sunnybrook and Pusat Juntung Hospital Umum Sarawak (PJHUS) cardiac datasets. This paper aims at developing a distance function to guide the automatic segmentation for LV contours and also to reduce segmentation error
    • …
    corecore